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Abstract: A number of tests for unit roots were proposed in the presence of structural changes in I(1) and
1(0) model when the numbers of break points are or are not known (though their locations are unknown).

Finite sample simulations often showed that their methods resulted in remarkable negative biases in the break

points estimates. Our paper attempts to eliminate the negative biases by utilizing the weighted symmetric

estimation.
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1. INTRODUCTION

It is commonly said among macroeconomists that
Japanese GDP seems to have structural breaks
twice between the mid- 50's and mid- 90's. In fact
visual inspection of Figure 1 of the GDP graph in
Hatanaka and Yamada [1999, abbreviated as HY
hereafter] looks as if there are two break points: the
first one is about 1971, and the second about 1991.
But it is not easy to determine the precise break
points if there is a unit root in the GDP. HY
attacked this problem and showed the two break
points in Japanese GDP over the period of 1957-
1995 by using their proposed statistical method.
They proposed unit root tests in the presence of
structural changes in I(1) and I(0) models when the
number of break points are or are not known. Their
method consists of two steps: estimating break
points and testing a unit root. However their
simulation study showed that the estimated break
points in the first step had serious downward bias.
We focus our attention on eliminating this
downward bias and confine ourselves to the case
when there are two break points though their
locations are unknown. This paper is a shorter
version of our working paper, Mackawa, He, and
Tee (2001), where derivations and proofs are given
(available on request).

2. REVIEW of HY

To deal with structural changes the following
notation and dummy variables are introduced. Let
2, and A, with 4, >4, be real numbers in (0,1).
HY assumed that there are two break points at time

T, =[TA,],i=12in the sample period, 12,---,T,
where [ ] denotes the integer part of the argument
its and A = (4;,4,) is called (the vector of) break

fractions. Define

0 if1<t<T;,
d(t, A,) =

, =12, (1)
t-T,  otherwise.

By using these notations, HY’s model can be
written as

ve=h +,B2t+}/1dt(t,/l])+72dt(t,/‘Lz)+u. 2

It is assumed that the disturbance u, is a pth-order
autoregressive (AR(p)) process,

(-a,L-a,L? — -——a, L'y, =&,

where L is the lag operator and &, ~iid(0,07).
Let

A(Ly=(-aL-a,L* =--—a,L?),
then as is well-known A(L) can be rewriften as

A() =1- (@, L+ayL? +---+a,L7)
=B(L)1-L)-alL,

©))

where
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B(L)=1=(b,L+byL? +-+-+b, | LP™),
bj =_(aj+] +.“+a-p)aj=1’2a"',p_l,

a=-{l-(a +a, +--+a,)I.
By letting du(t, A;) = Adt(t, ;) we have

0 ifl1<r<T,, .
du(t, A‘) = . 1= 192! (4)
1 otherwise.

and the model (2) can be rewritten as

Ay, = uy +pdult, )+ pydu(t, A,)+ 5t
+8,dH(t, A,)+8,di(t, A,) +ay,_, +b Ay, (5)
+"'+bp—lAy:—p+l +é,

where all the parameters y,,d;,i=0,1,2, can be
expressed in terms of f,, £,.71,72,4a;,-+-,a, (see

Eq.(7) in p.260 in HY). This is called the Dickey-
Fuller equation.

HY considered testing the null hypothesis Hy: {u, }
is I(1), ie., a=6,=8,=06,=0, against the
alternative hypothesis H,: {, } is I(0) for unknown
break points (4,,4,). HY utilized a t-statistic to
test a=0 and an F-statistic to test
a=6,=90, =06, =0. Their procedure to detect

the break points and test for a unit root is as
follows: (i) estimate the position of the break points
by choosing the values of A, and A, (T, and T;)

that minimize the sum of squares of Ordinary Least
Squares (OLS) residuals in the Dickey-Fuller
equations, (ii) substitute the estimated break points
into equations and calculate the t-statistic for «,
and (iii) accept or reject Hy according to the
computed t-value.

HY’s Monte Carlo simulation is designed to
produce data that mimics Japanese GDP over the

period (1957-1995). The first break point 7,=60
and second break point 7, =135, while the sample
size T=150. The parameter values of (2)
are f, =1.72, B, =0.021,7, =—-0.014,7, =—0.002 .
The disturbance , generated by (1-0.5L)(1-0.2
L)Au, =¢,.

HY’s simulation result is given in Table 1 and
Figure 1. Figure 1 shows that 7} is estimated with a
negative bias, that is, the break is estimated to occur
before actually does, and Tz is estimated very
badly. The result clearly shows that their

Tablel. Distribution of (7;,7,) computed by HY.

2™ break point
110-118 119-129 130-140 total
35-43 4 10 10 24
E 44-54 75 62 51 188
& 55-59 98 61 53 212
'g 60 222 180 170 572
B 61-65 1 2 0 3
%, 66-76 1 0 0 1
77-85 0 0 0 0
total 401 315 284 1000
0110-118
B119-129
O130-140
2nd break
point
1st break point

Figure 1. Distribution of (f"l ,f’Z) computed by HY.

method has remarkable negative biases in the
break point estimates. This paper attempts to
eliminate the negative biases by utilizing the
weighted symmetric (abbreviated as WS)
estimation. (Park and Fuller [1994]). They points
out that WS method generally has smaller mean
square error than the OLS, particularly when one
root is close to one in absolute value and for the
model with an estimated intercept, the one-sided
WS least squares test is the most powerful test.

3. WEIGHTED SYMMETRIC ESTIMATION
AND THE t-TEST

First, for any given real numbersA,,i=12, we
estimate the model (2) by OLS and calculate the
OLS residuals #, to satisfy:

Ve =P+ Pt +ydtt, ) +7,dt(t, A,) i, ©)
t=12,...T
where ” denotes an OLS estimate.

Second, construct the “backward and forward”
Dickey-Fuller equations based on the residuals #,

and the relation (3), namely,
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p-1

Ad, =il + D bl +e, Q)
L
and
p-1
Nd, = ai + Y b A e @)

j=

whereA™ =1-L7",L7'x, =x,,;. We define the
following weighted sum of squares of the new
residuals e, and e,

T T-p
0, = D wel + 2, A=W Yer? ©9)
t=1

t=p+l
where
0 t=12,--p;
t-p
w, =d——L2—  t=p+lL,p+2,-T-p+l
‘\T-2p+2 prap F
1 t=T-p+2,T-p+3,---,T.

The WS estimator of I =(a.b;,+,b, ) s
obtained by minimizingQ, , and the resulting
estimator is denoted by wa =(&,l;1,---,l;p_,)’.

Then we estimate o> by s2 ()= ?l—- 0. (f‘ws ).
-p
Finally, for of break

fractions AC,r=12,---, repeat the first and the
second steps so that we obtain s2(ADY), r=12,--,

any given vector

and then choose A satisfying

s2(y= inf s*(A) (10)

Ae(0.)x(0,1)

Given}:, we can construct the t-statistic for
testingar =0, using residuals based on the WS
estimator.

Our t-statistic is defined by
ST L O T e T LY
e - Pox, Gl

where the detailed definitions of notations,
derivations and the result are omitted here but are

given in our working paper, Maekawa, He, and Tee
(2001). We derived the nonstandard asymptotic
distribution of 75 4 -

4. FINITE SAMPLE SIMULATION

We carried out a Monte Carlo study using the data
generating process as in HY, that isT, =60, T, =135,
while T=150. The parameter of values of )]
is B, =172, B, =0.027, =-0.014,7, =-0.002.

The null model {Au,}is also generated by
(1-0.5L)1-0.2L)Au, = ¢,. To save computation

time, we also limited the interval for searching for
the break points 7, to [35,85] and 7, to [110,140}.

The finite sample distribution of (f", ,T}) is given
in Table 2, and the t-statistic is given in Table 3.
With 1,000 replications, we obtained T, =7; 953
times and T, = 7, only 78 times. From Figure 2 we
can see that our method can estimate T, fairly well
without any negative bias but 7, is estimated with
some negative bias. It seems difficult to estimate
T, precisely because T, = 135 is too close to the

end point of the sample period and the coefficient
7, =—0.002 is too small.

Table2. Distribution of (,,7,) using WS.

2" break point

110-118  119-129  130-140 total

35-43 1 0 o 1

§ 44-54 6 0 1 7
8. 55-59 4 5 10 19
§ 60 364 186 403 953
5 61-65 4 4 9 17
%, 66-76 1 2 0 3
77-85 0 0 0 0
total 380 197 423 1000

Table 3. Finite Sample Distributions of f, using

WS.
p 005 01 02 03 04
j 489 453 -408 381 363
p 05 06 07 08 09
P 344 325 298 274 248

p: probability that 7, is greater than entry.
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0110-118
W119-129
00130-140

2nd break
point

1st break point

Figure 2. Distribution of (fl T ») using WS,

To determine the effects of these parameters on
break point estimation, we considered two

additional cases: (1) 7,=120 and (2)7, =
—0.008 (all other parameters remains unchanged).
Our simulation shows that the HY estimator could

not eliminate the negative bias in estimating 7, in
the both cases. On the other hand, our WS method
can consistently estimate f’z =T, only 60 times out
of 1000 replications in the first case (7, =120), but

602 times in the second case (7, =-0.008). The
results are given in Tables 4 and 5.

Table 4. Distribution of (7,7,) using WS

(T, =120).

2" break point
110-118 119-129 130-140 Tota
1
= 35-43 0 0 0 0
'g 44-54 4 2 0 6
~ 55-59 11 7 6 24
® 60 417 280 253 950
2 6165 10 5 2 17
— 66-76 2 1 0 3
77-85 0 0 0 0
Total 444 295 261 1000

Table 5. Distribution of (7,,7,) using WS

(7, =—0.008).

2" break point
110-118 119-129 130-140 Tota
1
= 35-43 0 0 0 0
E_ 44-54 1 0 4 5
5 5559 2 2 14 18
8 60 40 94 820 954
2 61-65 0 1 . 11 12
—~ 66-76 0 0 11 11
77-85 0 0 0 0
Total 43 97 860 1000

Comparing Figures 3 and 4, it is obvious that the
performance of break point estimation in the second
case of 7, =-0.008 is better than in the first case

of T,=120. So we can say that the cause of poor
performance in estimating 7, in our initial
simulation is due to the coefficient of second break
point being too small.

'O -e10-118
500 ‘I119-129
#00 |O130-140
300 I
200
10
4 130-140 @

f S 2 o X9 &7/ -e10-118  2nd break

w L e g © w .

s 3 o T T point

b 1
1st break point

Figure 3. Distribution of (7;,7,) using WS

(T, =120).
0110-118
1000 W 119-129
800 0130-140
600
400
200
130-140
L B . 110-118
g I8 = 2nd break
3 % kit point
~
~
1st break point

Figure 4. Distribution of (7;,7,) with WS
(7, =—0.008).

5. CONCLUSIONS

In this paper, we attempt to eliminate the negative
biases in the break points estimates in HY’s
estimator by utilizing the Weighted Symmetric
Estimation.

Our Monte Carlo study shows that our method can
eliminate the negative bias in estimating the first

break point7;, but the bias in estimation of 7,

cannot be eliminated under our setup. Our Monte
Carlo experiments indicate that the reason for this

poor performance in estimating 7, is not because
7_’2 =135 is close to the end of the sample period,
but because the coefficient of the second break
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point 7, =—0.002 is too small.

We can expect that a unit root test based on our
break point estimation would be better than a test
based on biased break point estimation. Analytical
and numerical comparisons of the performance of
the unit root tests are now underway.
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